skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "W. Clark and A. Bloch"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hybrid (and impact) systems are dynamical systems experiencing both continuous and discrete transitions. In this work, we derive necessary and sufficient conditions for when a given differential form is invariant, with special attention paid to the case of the existence of invariant volumes. Particular attention is given to impact systems where the continuous dynamics are Lagrangian and subject to nonholonomic constraints. A celebrated result for volume-preserving dynamical systems is Poincaré recurrence. In order to be recurrent, trajectories need to exist for long periods of time, which can be controlled in continuous-time systems through e.g. compactness. For hybrid systems, an additional mechanism can occur which breaks long-time existence: Zeno (infinitely many discrete transitions in a finite amount of time).We demonstrate that the existence of a smooth invariant volume severely inhibits Zeno behavior; hybrid systems with the “boundary identity property” along with an invariant volume-form have almost no Zeno trajectories (although Zeno trajectories can still exist). This leads to the result that many billiards (e.g. the classical point, the rolling disk, and the rolling ball) are recurrent independent on the shape of the compact table-top. 
    more » « less